US009134984B2

a2z United States Patent (10) Patent No.: US 9,134,984 B2
Go et al. (45) Date of Patent: Sep. 15, 2015
(54) VIRTUAL NETWORK ADAPTER 7,254,816 B2 82007 Rosenbloom et al.
7,624,391 B2 11/2009 Boldon et al.
. . 7,793,279 Bl 9/2010 Leet al.
(75) Inventors: %arﬁdl?% lsagff Clérz’ %‘g (Iis,) Asrlfn 8326350 B2* 12/2012 Kauffman 455/557
- Hall, Palo Alto, CA (US); Wen Shu 8,514,701 B2* 82013 Kallaetal. 370/230
Tang Lu, Mountain View, CA (US); 8,819,235 B2* 82014 Cardonaet al. . .. 709/226
Annie Ding, Santa Clara, CA (US) 2002/0067504 A1 6/2002 Salgado et al.
2003/0202408 Al 10/2003 C}_lobotaro et al.
(73) Assignee: Hobnob, Inc., Mountain View, CA (US) 2006/0039276 Al* 2/2006 Jainetal ... 3707218
2006/0059482 Al 3/2006 Chamberlin et al.
. 2007/0100997 Al 5/2007 Hirschman et al.
(*) Notice: Subject. to any dlsclalmer,. the term of this 5007/0156293 Al 7/2007 Kellzi ef al.
patent is extended or adjusted under 35 2008/0056123 A1* 3/2008 Howardetal. ... 370/225
U.S.C. 154(b) by 196 days. 2008/0259951 Al* 10/2008 Cardonaetal. 370/465
2010/0046536 Al* 2/2010 Wrightetal. 370/412
. 2010/0061383 Al* 3/2010 Rupanaguntaetal. 370/401
(1) Appl. No.: 13/470,048 2012/0069366 Al 3/2012 Heffner et al.
. 2012/0102217 Al* 4/2012 Cardonaetal. 709/235
(22) Filed: May 11,2012 2012/0140283 Al 6/2012 Kimet al.
2013/0254833 Al* 9/2013 Nicodemusetal. 726/1
(65) Prior Publication Data . .
* cited by examiner
US 2013/0305263 Al Nov. 14,2013
(51) Int.Cl Primary Examiner — Andy Ho
nt. Cl. : .
GOGF 13/00 (2006.01) (74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP
GO6F 9/445 (2006.01)
(52) US.CL 57 ABSTRACT
CPC . GO6F 8/61 (2013.01); GO6F 13/00 (2013.01) The creation of a virtual network adapter is disclosed. At least
58) Field of Classification Search one existing network device having an existing driver is dis-
isting k device having isting driver is di
CPC o GO6F 9/4411 covered. At least one of an existing device-to-driver mapping
USPC ot 719/321, 327 and an existing driver associated with the existing network
See application file for complete search history. device is removed. A new driver capable of communicating
with the existing network device using a common set of
(56) References Cited primitive commands is installed. The new driver is mapped to
the existing device. The use of the virtual network adapter is
U.S. PATENT DOCUMENTS also disclosed.
7,103,788 Bl 9/2006 Souza et al.
7,225,240 Bl 5/2007 Fox et al. 24 Claims, 18 Drawing Sheets

j—214),_212)—208),—210
LTE USB 3G USB Ethernet Wireless LAN
Modem Modem Component Component

)'-418)—420

4121 l
WinUSB Driver

l Ethernet Driver

I Wireless Driver 14
} _)’—410

—_— 0os
. Wired Network Wireless LAN
WinUSB Adapter Network Adapter
\—416 \"422 \"424
Communication)"406
Aggregation
Application
T
I
I
40 | 02
Browser | SSH
Application | Application
I
AN | /
08
\ [' /
\ /
h Virtual Network /
Adapter

US 9,134,984 B2

Sheet 1 of 18

Sep. 15, 2015

U.S. Patent

@NFR

¢c _‘R

W

(Lol

_— S
p— o
H” N
— _H_ AN \
- AN \
AN
e AN
ozh \
wolsAg
Buipooegq | ———
/Buipooug
il 9Ll

U.S. Patent

Sep. 15, 2015

Sheet 2 of 18

US 9,134,984 B2

202
}_

204
)_

206
}_

CPU RAM Storage
208 212
Ethernet)— Rgg‘a’gge f
Component Modem
Wireless 210 Removable | (214
LAN f LTE USB)_
Component Modem

FIG. 2

U.S. Patent Sep. 15, 2015 Sheet 3 of 18 US 9,134,984 B2

j-302
Receive software and commence install
l j-304
Install generic USB modem driver

l

j-306
Remove existing USB device-to-driver mappings

l

j-308
Remove conflicting drivers if applicable

l

j-310
Install virtual network adapter

FIG. 3

U.S. Patent

214
)_

Sep. 15, 2015

212
),_

208
),_

Sheet 4 of 18

210
)_

LTE USB
Modem

3G USB
Modem

Ethernet
Component

Wireless LAN
Component

)—418

US 9,134,984 B2

)—420

412
2t

WinUSB Driver

Ethernet Driver

Wireless Driver

(0N

3‘-“3:410

WinUSB

Wired Network
Adapter

Wireless LAN
Network Adapter

\‘416 \

Communication
Aggregation
Application

\‘422/ \“424

)—406

404
_k

Browser
Application

SSH
Application

)—408

Virtual Network
Adapter

4

FIG. 4

/

/7
/
/
/

)—402

U.S. Patent

Sep. 15, 2015 Sheet 5 of 18

US 9,134,984 B2

Start communication aggregation application

502
)_

l

Enumerate devices

504
)_

l

Register for asynchronous notifications

506
)_

Open virtual network adapter

508
j_

Bring up link(s)

510
)_

FIG. 5

U.S. Patent Sep. 15, 2015 Sheet 6 of 18 US 9,134,984 B2

f—602
Start running Dispatcher in parallel on each “interface” of the device

Y)—604
Send INIT command(s)

h 4)-—606
Fetch info

A 4 j—608
Dial (on primary interface)

4 y—610
Go into status fetching loop on second interface, if available/needed

600—"

FIG. 6

US 9,134,984 B2

U.S. Patent Sep. 15, 2015 Sheet 7 of 18
Aggregation Core
406\ 7101)—748
EP1 EP2 EPN
706 704
Packet |J Qs |J
Service Requirements
)—732
Link Manager
712 714
E ¢ ; Notification)—
numerator e Handler e
Link 1 Link N
I/F 1 720 IVF 1 726
IF 2 722 IF 2 728
I/F 3 724
/s d - =
Ve ~ -
702
7 g) h >~ ~. /_L
Link 1 734 —
742— 1 Device Config Device
I/F 1 | Dispatcher — Script A/B Database
744 7527 7507 N~
I/F 2 |Dispatcher — Script C S
74 PPP Stack - ~
VF 3 Pispatéher — Script D/E/F —
730 736 738 Script
)_)_)_ Database
Performance Metadata Tower Info
Data
740

FIG.7

US 9,134,984 B2

Sheet 8 of 18

Sep. 15, 2015

U.S. Patent

1o

165

Smfﬂ

8 OIld
(€)¢d (€)d (€)'d € | p
(2)ed (2)d (2)Hd z | p
(T)¢'d (T)d (T)d T |p
(0)¥"'d (0)d (0)'d 0| p

Nwmu\

A

A

A

V_Q + XH.V_Q + NXN,v_Q

°q + X5q + ,X'q

&g +xtq + x'q

£+ g/ azs o
siayoed jeuoiloel ¢

7 99489p
Jo sjeiwiouAjod ¢/

S91AQ Y
9IS Jo 19y0ed ndu|

= (x) ¥q =(X) ¢d =(X) ’d
A A A
e N e
V.Q ﬁ.v_Q N.V_Q mQ mn_ qQ mQ NQ HQ
808
3 971s Jo m|v
oped [90
08—
Japoiaq 14

w:‘l\

208-

3 9ZIs JO
<+ 1oped

Japooud 14 w
0l

@Oﬁl\

US 9,134,984 B2

Sheet 9 of 18

Sep. 15, 2015

U.S. Patent

6 'Old

xQ ﬂ‘vﬁ N‘V_Q

mﬂ mQ vQ

mQ NQ HQ

\ J \

~

~

V.Q + xﬂ.v_Q + Nxmlxﬂ

= (x) €14

°q +%5q + x"q

g + Xtq + X'q

=(x)d

A

A

) 32Is Jo 1|ded
pajonisuoiay

sjerwoudjod
pa1on.isuodal ¢/

(£)d x (x) €1 (€)2dx (X) &1 | (€)dx (X1 x) &1
+ + +
€T '0=X
(T)Ed x (x) 71 (Tldx ()71 | (TFdx(x) 1)R 104 sje1wouA|od
+ + +
siseq uopejodiajul
(0)5"d x () °1 (0)%d X ()21 | (0)°d X (x)2 (x) 21 oduesde]
(€)'d (€)%d (€)'d €l €| p
(T)¥7d (1) (1)d el T | P
T +¢g/9us jo
(0)'d (0)°d (0)°d € | 0| p | sopedieuondeye
\Ml@ow
%8215 jo | @ 808 € 75 jo
908
19ded 10ed
] 08—
8Ll 19p02aQ 14 Nomlv Japoou] 14

U.S. Patent Sep. 15, 2015 Sheet 10 of 18 US 9,134,984 B2

)—1 002
Receive packet
)—1 004
Create fractional packets
)—1 006
Transmit fractional packets

FIG. 10

U.S. Patent Sep. 15, 2015 Sheet 11 of 18 US 9,134,984 B2

)—1 102
Receive fractional packets
j_1 104
Reconstruct original packet
)—1 106
Transmit packet

FIG. 11

U.S. Patent Sep. 15, 2015 Sheet 12 of 18 US 9,134,984 B2

06 118
Stateless .
inputs FSD determines Observed arrival
pieces to send of pieces
v 802
DeviceA [LLLT1 [HH T pevi
evice (—804 Device B
— L[11 [HHHF—
(—806
— [1] {H HH—
808
— 11 1] ([T F——
) v
Cl C2 C3 C4 < Ul U2 U3 U4
Capacities updated _
1202

FIG. 12

U.S. Patent Sep. 15, 2015 Sheet 13 of 18 US 9,134,984 B2

Est. Capacity Rel. Capacity Allowed splits with [=0.001, target 0.00001
2.0 Mbit/s 1.0 (1,2)
(2,3)
1.0 Mbit/s 0.5 (3,4)
0.5 Mbit/s | 0.25 (4,5)
(4,6)
0.5 Mbit/s 0.25 (5,7)

11 302 \—1 304 \2—1 306

FIG. 13

U.S. Patent

Sep. 15, 2015

Est. and Rel. Capacity

2.0 Mbit/s 1.0
1.0 Mbit/s 0.5
0.5 Mbit/s 0.25
0.5 Mbit/s 0.25

Current Sol'n

Sheet 14 of 18

US 9,134,984 B2

Possible Sol'ns using 1 piece

0 1.0 0.0 0.0 0.0

0 0.0 2.0 0.0 0.0

0 0.0 0.0 4.0 0.0

0 0.0 0.0 0.0 4.0
1.0

h

FIG. 14

2.0 4.0 4.0
1 402\“1 40)“'1 40\6\L‘1 408

U.S. Patent

Sep. 15, 2015

Est. and Rel. Capacity

2.0 Mbit/s 1.0
1.0 Mbit/s 0.5
0.5 Mbit/s 0.25
0.5 Mbit/s 0.25

Sheet 15 of 18 US 9,134,984 B2
Current Sol'n Possible Sol'ns using 2 pieces
1 2.0 1.0 1.0 1.0
0 0.0 2.0 0.0 0.0
0 0.0 0.0 4.0 0.0
0 0.0 0.0 0.0 4.0
I 2.0 2.0 4.0 4.0

\—1 502\)‘1 504\2—1 506\—1 508

FIG. 15

U.S. Patent

Est. and Rel. Capacity

Sep. 15, 2015

2.0 Mbit/s 1.0
1.0 Mbit/s 0.5
0.5 Mbit/s 0.25
0.5 Mbit/s 0.25

Current Sol'n

Sheet 16 of 18

US 9,134,984 B2

Possible Sol'ns using 3 pieces

2 1.5 1.0 1.0 1.0
0 0.0 1.0 0.0 0.0
0 0.0 0.0 2.0 0.0
0 0.0 0.0 0.0 2.0

1.5 2.0 2.0

h

FIG. 16

1.0
1 602\L

1 604\—1 606\—1 608

U.S. Patent Sep. 15, 2015 Sheet 17 of 18 US 9,134,984 B2

Fractional Split Decision example with target loss 1%

Allowed splits for L=0.001 target=0.01: (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7}, (8,8)

Round 1: best solution is (1,0) with required time 1.000
Round 2: best solution is (1,1) with required time 1.000
Round 3: best solution is (2,1) with required time 0.667
Round 4: best solution is (3,1) with required time 0.750
Round 5: best solution is (4,1) with required time 0.800
Round 6: best solution is (4,2) with required time 0.667

Global best solution is (2,1) with required time 0.667, representing an increase in
capacity of 50% and meeting the target loss of 1%.

FIG. 17A

Fractional Split Decision example with target loss 0.0001%
Allowed splits for L=0.001 target=0.000001: (2,1), (3,1), (4,2), (5,3), (6,4), (7,5), (8,6)

Round 1: best solution is (1, 0) with required time 1.000 (ignored since not in
allowed splits)
Round 2: best solution is (2, 0) with required time 2.000
Round 3: best solution is (2, 1) with required time 2.000
Round 4: best solution is (3, 1) with required time 1.500
(4,1)
(4,2)

Round 5: best solution is with required time 1.333
Round 6: best solution is with required time 1.000

’

’

Global best solution is (4,2) with required time 1.000, representing an increase in
capacity of 0% and meeting the target loss of 0.0001%.

FIG.17B

U.S. Patent Sep. 15, 2015 Sheet 18 of 18 US 9,134,984 B2
1804~ 1806~
HOBNOB APP \ Launch Dashboard ™\ Settings
1| AGGREGATION THROUGHPUT Download 3 Upload
e L e R - N [W +--18 10 Comection
D9 | 4 Wbps Quality
\ 330 pm J45pm 4pm 415pm 4:30pm 1830
" UPLINKS 1816 1818~ SIGNAL SESSION USAGE PERFORMANCE N\
3 1822 Rafing: Good~ A
AT&T | 650456 7890 : 1820 Thrm?ghput f11882264 Y1
< Connected, passing traffic : : Jownload 88:Kb s
o\l A SemaMercury88s] (HL2MBY) i T0Kons
ESN/MEL 3141592653589793 | | 1828
Next billing cycle: Feb. 19, 2012, [ms l /
[Verizon] 650-234-7890 $hart{)nuggih%3?d |
Connected, passing traffic ownload 150 KOs -
wo [(s | e
ESN/MEI 3141592653589793 Latency
N 0FF Next billng cycle: Feb. 19,2012 775 B ms ; %
o\ [Sprint 40898716543 [$harl§)nugdhnéﬁt &
ON| off]
Novatel U720 1]
3] ESNIMEL 3141592653580793 [| Latency
OB Next biling cycle: Feb. 15,2012] [; A
SFO Hotspot] ?ﬁ‘}é”u%h%ﬁ?d &
Connected, passing traffic 1 nloa
e 1832 {2 ({ this session)] [0
No limit Latency |
Channel 11 ms !A]
[\ [Srrint 1 400 007 2247 — Rafing: n/a el
1800 —* FIG. 18

US 9,134,984 B2

1
VIRTUAL NETWORK ADAPTER

BACKGROUND OF THE INVENTION

Individuals increasingly expect the presence of reliable
access to the Internet, irrespective of where they are. Unfor-
tunately, individuals can face a variety of challenges in
obtaining such access. As one example, the quality of a given
connection can vary based on where the individual is physi-
cally located. As another example, a particular link may be
congested (e.g., due to heavy use by other individuals) result-
ing in lower available bandwidth.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a diagram illustrating an embodiment of an envi-
ronment in which fractional encoding and decoding of pack-
ets is performed.

FIG. 2 illustrates an embodiment of a client device.

FIG. 3 illustrates an embodiment of a process for creating
a virtual network adapter.

FIG. 4 is a conceptual diagram that illustrates an example
of'a client after a communication aggregation application and
a virtual network adapter have been installed.

FIG. 5 illustrates an embodiment of a process for using a
virtual network adapter.

FIG. 6 illustrates an embodiment of a process for bringing
up a link.

FIG. 7 illustrates components associated with a communi-
cation aggregation application in some embodiments.

FIG. 8 illustrates an example of fractional threshold encod-
ing according to one embodiment.

FIG. 9 illustrates an example of fractional threshold decod-
ing according to one embodiment.

FIG. 10 illustrates an example of a process for creating
fractional packets.

FIG. 11 illustrates an example of a process for reconstruct-
ing fractional packets.

FIG. 12 illustrates an example of a fractional split decision
and link performance feedback loop.

FIG. 13 illustrates information used in determining a frac-
tional split.

FIG. 14 illustrates an example of the first iteration of a
process for performing a fractional split decision.

FIG. 15 illustrates an example of the second iteration of a
process for performing a fractional split decision.

FIG. 16 illustrates an example of an additional iteration of
a process for performing a fractional split decision.

FIG. 17A illustrates an example of a fractional split deci-
sion made with a target loss of 1.0%.

FIG. 17B illustrates an example of a fractional split deci-
sion made with target loss of 0.0001%.

FIG. 18 illustrates an embodiment of an interface for man-
aging aggregate communications.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the

10

15

20

25

30

35

40

45

55

60

2

invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

FIG. 1 is a diagram illustrating an embodiment of an envi-
ronment in which fractional encoding and decoding (also
referred to herein as “reconstruction”) of packets is per-
formed. In the example shown, client 102 is a laptop com-
puter belonging to an individual hereinafter referred to as
“Alice.” Alice uses her laptop in a variety of locations, includ-
ing at her home and at her office. Alice also uses her laptop in
other locations, such as: (1) when commuting to and from her
office on a train that offers wireless Internet service to pas-
sengers; (2) in a hotel room that offers wired Internet connec-
tivity; and (3) in a café near the hotel that offers wireless
Internet service. As will be described in more detail below,
client 102 includes packet encoding/decoding tools. Client
102 also includes various modems, network adapters, and/or
other networking hardware.

In addition to laptop 102, Alice has a tablet device 104 and
a smartphone 106. Laptop 102 can be configured to share its
network connectivity with additional devices, such as devices
104 and 106. For example, if Alice’s laptop 102 has two
wireless LAN cards, one can be used to provide connectivity
to tablet 104 and the other used to connect to a wireless access
point. If Alice has only one wireless LAN card, other net-
working components present in laptop 102 can be used to
obtain network connectivity (e.g., via Internet 116) and the
sole wireless LAN card can be used to provide connectivity to
tablet 104. As another example, if Alice’s laptop 102 includes
a Bluetooth radio, the Bluetooth radio can be used to share
whatever aggregate internet connectivity laptop 102 has with
smartphone 106 (which also includes a Bluetooth radio).

Aggregation Overview

Suppose Alice is currently riding on a train commuting to
her office. She wishes to connect to server 122 using an
application 402 that supports the SSH protocol. Server 122
has an Internet-routable address. Alice also wishes to browse
website 120 using a browser application 404. One option for
Alice is to use the wireless services provided by the train
operator (represented as wireless access point 124 in FIG. 1)
to make connections to server 122 and website 120. Using the
techniques described herein, Alice can also aggregate any
additional connectivity she might have (e.g., via a removable

US 9,134,984 B2

3

3G USB modem) to improve her experience, such as by
increasing her bandwidth and/or by increasing the reliability
of her connections with server 122 and website 120.

Now suppose that rather than being on a commuter train,
Alice is at a hotel that offers DSL services through a wired
connection in her hotel room. Alice could use the wired
services provided by the hotel to connect to server 122 and
website 120. Using the techniques described herein, Alice can
also aggregate any additional connectivity she might have,
such as may be provided by the 3G USB modem, and/or such
as through an open wireless access point 128 operated by a
café that is within range of her hotel room.

Fractional Packet Overview

As will be described in more detail below, packets associ-
ated with applications installed on client 102, such as appli-
cations 402 and 404, are transformed into fractional packets
and transmitted across one or more available links. Examples
of such links are connections made between client 102 and
infrastructure 110-114 provided by respective wireless carri-
ers. As one example, infrastructure 110 can be provided by a
carrier such as Verizon Wireless (e.g., supporting 3GPP Long
Term Evolution communications). Infrastructure 112 and 114
and any additional infrastructure can be provided by other
carriers (e.g., Sprint Nextel Corporation) and support other
forms of communications (e.g., EDGE or WIMAX). A given
infrastructure typically comprises multiple nodes in multiple
locations, but is depicted in FIG. 1 for conciseness as a single
tower. Other examples of links include connections made
between client 102 and wireless access points 124 and 128;
between client 102 and any wired infrastructure, such as a
DSL router 126 located in a hotel; and between client 102 and
a portable wireless hotspot (not shown).

The fractional packets are ultimately received by system
118 (which is located, e.g., at a data center or a head end of a
service provider), which reconstructs client 102’s packets
from the fractional packets and routes the resulting recon-
structed packets to their appropriate destinations (e.g., net-
work nodes 120 and 122). Any return traffic intended for
client 102 (e.g., from nodes 120 and 122) is routed to system
118 which fractionally encodes the return traffic and causes it
to berouted to client 102. On client 102, the fractional packets
are decoded and the recovered information is provided to the
SSH and browser applications, as applicable. While both
client 102 and system 118 are both capable of both encoding
and decoding fractional packets, for conciseness, the
examples described herein will generally reference the
encoding of packets by client 102 and the decoding of packets
by system 118.

Client Device

FIG. 2 illustrates an embodiment of a client device. In the
example shown, client device 102 is a commodity laptop
computer comprising typical hardware elements and a variety
of consumer-oriented wireless cards. In particular, client 102
includes a CPU 202, RAM 204, and storage 206 (such as one
or more hard disks). Other components, such as a display and
one or more input interfaces, can also be included, as appli-
cable. In the examples described herein, client 102 runs an
operating system provided by Microsoft Corporation, such as
Windows 7. Clients running other operating systems can also
be used and the techniques described herein adapted as appli-
cable.

Also included in client 102 are a variety of networking
components 208-214 that facilitate network communica-
tions. Such networking components can be fixed (e.g., inte-
grated into client 102 at the time of manufacture or added as
a hardware upgrade). Such networking components can also
be removable (e.g., insertable by a user into a slot such as a

5

10

15

20

25

30

35

40

45

50

55

60

65

4

USB, PCMCIA, ExpressCard, MiniPCI, MiniPCI Express,
and/or any other appropriate peripheral interfaces). In various
embodiments, any of networking components 208-214 are
omitted and/or additional networking components are
included.

As shown, client 102 includes a commodity Ethernet com-
ponent 208 and a commodity wireless LAN component 210.
Client 102 also includes two off-the-shelf consumer wireless
cards 212-214. Removable 3G USB modem 212 is sold by the
carrier that provides infrastructure 110 (hereinafter “Carrier
A”). Alice has a postpaid data plan with Carrier A which
allows her to use unlimited data (at up to 3G speeds) for $50
per month. Removable LTE USB modem 214 is sold by the
carrier that provides infrastructure 112 (hereinafter “Carrier
B”). Alice has a prepaid plan with Carrier B whereby each
Gigabyte of data costs her $15. When Alice has access to
wired Ethernet services (e.g., when she is at her office or at a
hotel), Ethernet component 208 can provide Alice with net-
work connectivity (whether for free or for a fee). Similarly,
when Alice is in range of a suitable access point, wireless
LAN component 210 can also provide Alice with network
connectivity. As will be described in more detail below, the
network resources made available via networking compo-
nents 208-214 (or other appropriate networking components)
can be aggregated using a virtual network adapter. In some
embodiments, the aggregated resources will appear to client
102 as a single layer two connection.

Creating a Virtual Network Adapter

FIG. 3 illustrates an embodiment of a process for creating
a virtual network adapter. In various embodiments, the pro-
cess shown in FIG. 3 is performed on client 102. Whenever
client 102 is described as performing a task, a single compo-
nent, a subset of components, or all components of client 102
may cooperate to perform the task. Similarly, whenever a
component of client 102 is described as performing a task
(e.g., application 406), a subcomponent may perform the task
and/or the component may perform the task in conjunction
with other components.

Process 300 begins at 302 when installer software is
received. The installer software can be received in a variety of
ways. For example, the installer software can be bundled with
a networking component, such as by being included on
removable USB modem 212. When Alice inserts the USB
modem the first time, she is prompted to install the installer
software, which is received at 302 by client 102. As another
example, Alice could download the installer software from a
website using browser application 404.

When the installer software is executed, a client applica-
tion is copied to an appropriate location on client device 102
(e.g., a directory on storage 206). The client application is
also referred to herein as communication aggregation appli-
cation 406. The installer software also, at 304, installs a
generic USB modem driver. One example of such a driver is
built as a lightweight wrapper around the “WinUSB” generic
driver provided by Microsoft Corporation. Associated with
the generic USB modem driver is a .INF file that maps par-
ticular devices to the generic USB modem driver (e.g., via a
vendor ID and product ID associated with the device). For
example, identifiers corresponding to 3G USB modem 212
and LTE USB modem 214 are both present in the .INF fileand
map those modems with the generic USB driver.

In some cases, existing drivers for devices such as modems
212 and 214 may already be present on client 102. For
example, Alice may have been using the modems for some
time prior to downloading the installer software. The generic
USB modem driver installed at 304 has properties which in
some cases give it priority over the previously installed driv-

US 9,134,984 B2

5

ers by the operating system. For example, the .INF file may
contain a “Feature Score” directive which increases the pri-
ority of the driver as computed by Microsoft Windows. How-
ever, in some cases, additional processing (306-308) may be
needed to successfully map USB network devices 212-214
with the generic USB driver. One approach is to remove any
existing USB device-to-driver mappings (306). In this
approach the existing driver is not removed—just the map-
ping (e.g., the entry in the .INF file). A second approach is to
remove any conflicting drivers (308) from client 102. In vari-
ous embodiments, Alice’s permission is requested by the
installer software prior to actions 306 and/or 308 being taken.
As one example, Alice can be informed that an existing driver
is about to be uninstalled, and asked whether she would like to
save a backup copy of the driver prior to its removal.

Based on the USB specification, a given device may be
composed of multiple interfaces which are in turn composed
of multiple endpoints. Some operating systems will treat such
adevice as a single device. Other operating systems operate at
the interface level, meaning that when such a device is
plugged in, each of the multiple interfaces will appear to be a
separate device (sometimes referred to as a “composite
device”). In some embodiments, the installer software is con-
figured to prevent a multiple-interface device from being
treated by the operating system as multiple devices—instead
installing a driver for the base device, only.

Finally, at 310, the virtual network adapter is installed.

FIG. 4 is a conceptual diagram that illustrates an example
of client 102 after a communication aggregation application
and a virtual network adapter have been installed. Dotted line
410 represents a conceptual division between kernel space
(above the line) and user space (below the line). As shown,
network components 214 and 212 are handled by operating
system 414 using the wrapped WinUSB generic driver 412.
Operating system 414 exposes a WinUSB endpoint 416 that
applications such as communication aggregation application
406 can bind to. Ethernet component 208 and wireless LAN
component 210 have their own respective drivers (418 and
420) and are also exposed by operating system 414 for use by
applications (via respective adapters 422 and 424).

Using the Virtual Network Adapter

FIG. 5 illustrates an embodiment of a process for using a
virtual network adapter. In various embodiments, the process
shown in FIG. 5 is performed on client 102. The process
begins at 502 when communication aggregation application
406 is started. Application 406 can be started in a variety of
ways. As one example, application 406 can automatically
start whenever client device 102 is turned on. As another
example, application 406 can automatically start whenever a
removable networking component (e.g., modem 212) is
inserted into client 102. As yet another example, application
406 can be started on demand by Alice.

At 504, any networking devices present in client 102 are
enumerated. In some embodiments, enumeration is per-
formed by enumerator 712. One way to perform enumeration
is to examine the .INF file for the presence on client 102 of any
devices included in the file. Ethernet and Wireless LAN
devices that are not included in the .INF file but are present in
client 102 (e.g., 422 and 424) are also enumerated. One way
to perform this enumeration is to scan for the presence of
network adapter interfaces (422 and 424) corresponding to
devices 208 and 210. Another way to perform enumeration is
to consult a device database 702 that includes information on
devices previously used by client 102 (which can include both
fixed and removable devices). In some embodiments, portion
504 of process 500 is repeated periodically (e.g., every 60
seconds).

15

25

40

45

6

At 506, a request is made to register for asynchronous
notifications. In some embodiments, the request is made by
link manager 732. If any additional networking devices are
inserted (and/or turned on), or if any networking devices are
removed (and/or turned off), application 406 will be notified
accordingly through asynchronous notifications. Such notifi-
cations are managed by notification handler 714. In some
embodiments, a filter is applied by the notification handler to
received notifications so that only changes in status/addi-
tions/removals of networking devices of interest (and not,
e.g., devices not of interest, such as USB mice) are monitored
for. In some embodiments, portion 504 of process 500 is
repeated whenever an asynchronous notification involving a
network device of interest is received. In some embodiments,
portion 506 of the process is omitted. For example, users can
be asked to insert all removable devices prior to starting
application 406, or can be asked to insert all removable
devices after starting application 406. Periodic re-enumera-
tion can also be employed, without using the processing per-
formed at 506.

At 508, the virtual network adapter is opened. Finally, at
510, links such as a connection between client 102 and infra-
structure 110 and/or a connection between client 102 and
infrastructure 112 are opened. Applications 402 and 404 use
virtual network adapter 408 for their network communica-
tions. Packets received from those applications via the virtual
network adapter are processed by communication aggrega-
tion application 406 which in turn causes fractional packets to
be sent out over the link(s).

Additional detail regarding portions of process 500 and
regarding components of communication aggregation appli-
cation 406 is provided in conjunction with FIG. 6, FIG. 7, and
the accompanying descriptions of those figures.

FIG. 6 illustrates an embodiment of a process for bringing
up a link. In some embodiments, process 600 is performed at
510 in process 500 for each enumerated networking device. In
the following discussion of FIG. 6, removable 3G USB
modem 212 is used as an example of an enumerated network-
ing device for which a link is brought up.

The process begins at 602 when a Dispatcher is run, in
parallel, on each interface of an enumerated networking
device. Each Dispatcher is configured to run applicable
scripts included in script database 740. Dispatchers perform
tasks such as initializing its associated networking device. As
will be discussed in more detail below, modem 212 includes
multiple interfaces and multiple Dispatchers will be brought
up for the device in parallel accordingly. Certain commands
(such as “power on radio” or “fetch signal strength”) are
applicable to all devices. However, each device may have a
specific, distinct way of being instructed to execute the com-
mand. By using a combination of Dispatchers and device-
specific scripts, commands can be issued to devices using a
common set of primitives (e.g., a generic “power on radio”
instruction) that are then implemented by the implicated Dis-
patcher/script. Changes can be made to the scripts without
requiring a reboot of client 102.

At 604, applicable initialization (INIT) commands are
sent. One example is a USB command to turn on a modem.
Another example is an AT command to set a variable.

At 606, applicable information is fetched (e.g., from device
database or script database 740). Examples of such informa-
tion include phone numbers and/or settings information.

At 608, the primary interface is instructed to perform a
dialing operation. The particular manner in which dialing
should be performed on a given device can be specified using
device database 702 and script database 740 and any appli-
cable settings (e.g., configuration 734). Typically, irrespec-

US 9,134,984 B2

7

tive of how many interfaces a device has, only one interface
will enter data mode. In some embodiments, that interface is
hooked to PPP stack 750.

Finally, as applicable, at 610, a status fetching loop is
entered into on a secondary interface. Some networking com-
ponents have several interfaces. For example, link 716
includes three interfaces (720-724). One interface (e.g., inter-
face 720) is used for dialing. The second interface (e.g.,
interface 722) is used for initialization. The third interface
(e.g., interface 724) is used to monitor signal strength. Other
networking components have fewer interfaces. For example,
link 718 has only two interfaces (726-728). The first link
(726) will be used to send and receive data, leaving the second
link (728) the only one available to perform tasks such as
checking signal strength or changing settings. The status
fetching loop (610) can be employed to use the secondary
interface to perform multiple types of tasks. As one example,
the Dispatcher associated with the secondary interface can
loop through each of the status-related tasks (e.g., determin-
ing signal strength, then determining latency). In some
embodiments, a background queue is employed so that user-
initiated requests (e.g., changes to settings) can be interleaved
with the status fetching operations. One way for the Dis-
patcher to make use of a background queue is for the Dis-
patcher to yield every five seconds for five seconds to process
any items waiting in the background queue.

Some devices provide ‘“unsolicited messages.” For
example, 3G USB modem 212 may generate a message that it
has switched towers, whenever it switches towers. In various
embodiments, link manager 732 is configured to monitor for
the presence of such unsolicited messages, and place them in
a queue for processing, if applicable. For example, if a tower
switch message is received from a link, the current tower
information (738) is updated accordingly. Other messages
may not be of interest to link manager 732 and are dropped or
otherwise ignored instead of being added to the queue.
Instructions for which unsolicited messages should be pro-
cessed and which should be ignored can be stored in a variety
of places, including as device configuration information 734,
in script database 740, or any other appropriate location.

FIG. 7 illustrates components associated with communi-
cation aggregation application 406 in some embodiments.
The components depicted in FIG. 7 can be included within the
application and can also be located outside the application but
be usable by or work in cooperation with the application as
applicable. Whenever application 406 performs a task (such
as receiving encoding or decoding a packet), either a single
component or a subset of components or all components of
application 406 may cooperate to perform the task.

Link manager 732 manages the enumerated links (e.g.,
links 716 through 718) and is responsible for tracking infor-
mation such as the current state of each of the links, configu-
ration information (734), metadata (736), which tower the
link is connected with (738) if applicable, etc. Enumerator
712 performs enumeration and re-enumeration of devices
(described in more detail in conjunction with portion 504 of
process 500). Asynchronous notification handler 714 listens
for notifications from operating system 414 (described in
more detail in conjunction with portion 506 of process 500).

One example of a link is link 716. As previously explained,
link 716 includes three interfaces 720-724, each of which has
an associated Dispatcher (742-746). In the example shown,
suppose link 716 corresponds to 3G USB modem 212. When
enumerator 712 enumerates modem 212, link manager 732
determines which configuration information (e.g., 734) and
scripts are applicable to the device by consulting device data-
base 702. Link manager 732 then instructs Dispatchers 742-

10

15

20

25

30

35

40

45

50

55

60

65

8

746 to obtain the appropriate scripts (e.g., script 752) from
script database 740. As one example, script 752 could be
responsible for looping and fetching signal strength for
device 212.

Also included in application 406 is aggregation core 710.
When a link is brought up (e.g., link 716), a corresponding
endpoint (e.g., endpoint 748) is created. When packets are
received via virtual network adapter 408, packet service 706
provides the stream of packets to the aggregation core 710,
which performs fractional encoding (and decoding) and
sends the fractional packets over the various endpoints.

As described in more detail below, for each input packet
(received by the packet service from client 102), two param-
eters n and m are selected, which together define the granu-
larity and redundancy of the fractional encoding. Specifically,
for an input packet of size k, an encoder in the aggregation
core generates m fractional packets of size k/n such that
having any n of the m pieces allows the original packet to be
reconstructed. The fractional packets are then sent over the
available links to system 118, which is able to rebuild the
original packet as soon as it receives the “threshold” number
of'packets n. In the case where one fractional packet is sent on
each available link, the effective bandwidth of the system is n
times the bandwidth of the n? fastest link, with significant
redundancy added via the m-n extra packets.

Various techniques can be used to create fractional packets
from the input packets. In the examples describe herein, the
technique used to generate fractional packets is based on
Shamir’s secret sharing method. However, other crypto-
graphic secret sharing techniques may also be used, as may
other techniques, such as Reed-Solomon erasure codes with
forward error correction, turbo codes, parity-check codes,
convolutional codes, Hamming codes, etc., and the tech-
niques described herein adapted as appropriate.

Additional sources of information can also be used in
determining n and m and in the assignment of the resulting
fractional packets to links. As one example, link performance
data includes information such as the estimated capacity of
each link or the loss rate of each link. One source of link
performance data includes information provided by the
device providing the respective link. For example, link 716
has the ability to report on its signal quality, an example of
performance data 730. In some cases, such as a satellite link,
link performance may be significantly better in one direction
than the other. Application 406 can specify that a satellite link
be used only for downlink, while other links are used for
uplink, or that only a portion (e.g., 25% of traffic) be sent via
the satellite connection.

Quality of Service requirements 704 are specified by a user
such as Alice and allow Alice to specify desired link quality
targets such as loss rate or latency. For example, if all links are
lossy, or if a low packet loss rate is desired, application 406
may determine to reduce n, which makes it more likely that
enough data will be received to reconstruct the packet. In
various embodiments, Alice is able to configure other goals as
well. For example, if client 102 is being used to facilitate a
VOIP call, it might be preferable to reduce latency, even at the
cost of a higher loss rate. Conversely, if client 102 is making
use of TCP, a more stable connection might be preferable. As
another example, Alice can specify that she prefers to favor
the use of a link associated with a monthly flat rate fee over a
pay-by-use link. As another example, if Alice is about to make
acritical high definition video call, she may prefer to optimize
her aggregate connection for bandwidth and/or reliability,
even if it means paying more for the connection.

An example of an interface displaying status to Alice is
shown in FIG. 18. As described in more detail below, the link

US 9,134,984 B2

9

performance data and QOS requirements can change dynami-
cally over time, and other inputs to application 406 can also be
used (or omitted) as applicable.

Fractional Encoding

FIG. 8 illustrates an example of fractional threshold encod-
ing according to one embodiment. In the example shown, the
(3,4) case (i.e., n=3, m=4) is used and Galois Field 2 is used
as the computation space. Other fractional splits and fields
can also be used, as applicable. Links 802-808 represent the
links available to application 406.

The process begins with an input packet (810) of size k,
whose bytes are by, b, . . . , b,. Ifk is not a multiple of 3, the
buffer is padded with zeroes so that it is. For each consecutive
triplet of three bytes (e.g., v,, v,, and v;), a degree 2 polyno-
mial P, is constructed where the bytes are the coefficients of
the polynomial P,(x)=v x*+v,x+v,. Since there are three
bytes per polynomial, there are

of these polynomials.

Next, each of the output fractional packets 812-818 is built
as follows. For each output fractional packet, a unique sample
point (e.g., 0-255) is chosen. In the example shown, zero is
used first, and the number is incremented by one for each
output packet. The first three bytes ofthe fractional packet are
set to the packet ID, sample point, and the number of packets
needed for reconstruction. This data allows system 118 to
match up incoming fractional packets and determine when
sufficient data has been received to attempt decoding.

The rest of the bytes in the fractional packet come from
evaluating each of the

polynomials at the selected sample point. In the example
shown, this results in four output packets each having length

bytes.

FIG. 9 illustrates an example of fractional threshold decod-
ing according to one embodiment.

In the example shown, assume that the fractional packet
sent over link 806 has been lost. Accordingly, only three of the
four packets sent in the process shown in FIG. 5 are available
for reconstruction. As each fractional packet arrives, it is
stored in a buffer based on the packet ID. Once three packets
corresponding to the same packet ID have been collected, it is
known based on the fractional packet headers that a sufficient
number of pieces have been received by system 118 to begin
decoding.

The process begins by first constructing the unique
Lagrange interpolation polynomials for the sample points
that are used in the reconstruction. In the example shown in
FIG. 9, sample points zero, one, and three are present.

As per the Lagrange interpolation process, system 118 can
then directly multiply these basis polynomials with the
sample points and add the results together to obtain the coef-
ficients of the original polynomials P,, which correspond to

10

20

35

40

45

50

10

the bytes in the original packet. The decoder then directly
rebuilds the original packet by putting the coefficients into a
buffer.

FIG. 10 illustrates an example of a process for creating
fractional packets. In some embodiments the process shown
in FIG. 10 is performed by application 406. The process
begins at 1002 when a packet is received. For example, at
1002 a packet is received from application 404 by packet
service 706. At 1004, one or more fractional packets are
constructed from the received packet. For example, at 1004,
the processing shown in FIG. 8 is performed. At 1006, the
fractional packets are transmitted. For example, at 1006, one
fractional packet is transmitted via each of the available links
802-808.

FIG. 11 illustrates an example of a process for reconstruct-
ing fractional packets. In some embodiments the process
shown in FIG. 11 is performed by system 118. The process
begins at 1102 when fractional packets are received. For
example, at 1102 a fractional packet is received from link 802
and another is received from link 804. Once a sufficient num-
ber of fractional packets have been received, at 1104, the
original packet is reconstructed. For example, once a frac-
tional packet is received from link 808, per the example
shown in FIG. 9, the original packet can be reconstructed at
1104. At 1106, the original packet is transmitted. For
example, if the packet is intended for website 120, at 1106 the
packet is transmitted to website 120.

FIG. 12 illustrates an example of a fractional split decision
and link performance feedback loop. Using the techniques
described herein, application 406 is able to respond in real-
time to changes in the capacities ofthe links. In some embodi-
ments application 406 decides how to split packets based on
stateful and stateless information that it maintains for each
link. One example of such a decision process is one that stores
estimated link capacities C,, C,, . . . C, for each of the j links.
This stateful data is combined with stateless inputs such as a
target loss factor used by a fractional split decision (FSD)
algorithm which determines the number and size of the pieces
to be sent on each link.

At any one time, the fractional encoder maintains a best
estimate of link capacities C,, C,, . . . C, corresponding to the
j links. As fractional packets are sent from application 406 to
system 118, the receiver (system 118) is responsible for
examining the packets as they arrive for information to aid in
refining the capacity estimates. This can be done using a
variety of techniques such as inter-packet arrival timing by
identifying packet trains, or simple time averaging of data
arrival, etc.

The end result of the receiver-side analysis is link capacity
update information for each link U,, U,, . . ., U; as shown at
1202. This information is sent from system 118 back to appli-
cation 406, which then applies this information to update the
estimated link capacities.

FIG. 13 illustrates information used in determining a frac-
tional split. The information shown illustrates a sample case
in which an input packet of size 1000 is to be split over four
links whose estimated capacities (e.g., as determined by the
process described in conjunction with FIG. 7) are 2.0, 1.0,0.5
and 0.5 Mbits/sec respectively, as shown in region 1302.

The process begins by normalizing the link capacities with
respect to the fastest link. In this case, the relative capacities
are 1.0, 0.5, 0.25, and 0.25, as shown in region 1304.

In the example shown, a static estimated loss rate and loss
target is used. Accordingly, an allowed splits table of (n,m)
fractional splits is built that satisfies the loss criteria. Specifi-
cally, for each integer value of m pieces to send out, the value
n<=m is determined such that the probability of having at

US 9,134,984 B2

11

least n/m packets arrive is greater than the target threshold.
This value may be computed based on the cumulative bino-
mial distribution.

In the example shown, an estimated loss rate of 0.001 per
packet has been selected, which indicates that 1 out of every
1000 packets will be dropped. The loss target is 0.00001,
indicating that it is desired that effectively only 1 out of every
100000 packets lose enough data so as to prevent reassembly.
The first few values of the allowed splits table are shown in
region 1306. The first pair (1,2) indicates that if two pieces are
sent, each of them must be the full data (i.e., divided by 1) to
satisfy the loss target. The second pair (2,3) indicates that if
three pieces are sent, each of the pieces could be half the size
(i.e., divided by 2) and the loss requirement would be met.

In some embodiments performing a fractional split deci-
sion includes the use of a greedy solver that incrementally
adds more pieces until it finds the minimum global constraint
among all the links. The process begins by assigning zero
packets to every link, and then computes for each possible
way to add one additional packet, the effective dimensionless
time it would take for all the data to reach the other end.

FIG. 14 illustrates an example of the first iteration of a
process for performing a fractional split decision. In the
example shown, beginning with an initial solution of zero
packets on each link, each possible allocation of one addi-
tional packet is explored. Note that based on the selected loss
criteria in this example, there is no way to satisfy the loss
requirements if a single piece is sent. For purposes of illus-
tration, however, assume that the single piece is not split at all
(i.e., the fraction is 1).

In the first case (1402), allocating the packet to the first link
will result in 1 piece of 1000 bytes sent on the first link and
zero on the rest. Since the first link has relative speed 1.0, this
will take 1.0 relative units of time to transfer. This is com-
puted as (bytes to send/original bytes)*(1/link capacity). For
the other links, the 0 bytes sent will take 0.0 units of time to
transfer, and thus the overall time required for this allocation
is the maximum time required on each link, which is 1.0.

In the second case (1404), allocating the packet to the
second link results in there being 1 piece of 1000 bytes sent on
the second link and zero on the rest. With a relative speed of
0.5, it will take the second link 2.0 relative units of time to
transfer the pieces. As in the first case, the other links will
require 0.0 units of time to transfer 0 bytes. Thus the time
required for this allocation is 2.0.

The third (1406) and fourth (1408) cases are similar, but
with a relative speed of 0.25, each case results in a required
time of 4.0. Therefore, the best greedy allocation choice is to
allocate the packet to the first link so that the smallest effec-
tive time required to transfer the data is used. This solution is
denoted as (1,0,0,0)—1.0.

FIG. 15 illustrates an example of the second iteration of a
process for performing a fractional split decision. The
example shown repeats the processing described in conjunc-
tion with FIG. 9. In this example, the current solution is
(1,0,0,0) and the table of allowed splits indicates that for two
pieces, each of them must be full size to meet the loss require-
ments. An exploration of the four possible allocations for the
next piece is performed. They are denoted as configurations
(2,0,0,0), (1,1,0,0), (1,0,1,0), and (1,0,0,1).

In the first case (1502), two packets of size 1000 are
assigned to the first link, so the effective time required to send
the 2000 bytes over the 1.0 capacity link is 2.0. In the second
case (1504), one packet of size 1000 is sent on the first link
and one packet of size 1000 is sent on the second link. The first
link’s effective time is 1.0 and the second link’s effective time
is 2.0, so the effective time to transfer is 2.0.

10

15

20

25

30

35

40

45

50

55

60

65

12

Similarly, for the third (1506) and fourth (1508) cases, the
effective time is 4.0. The best solution using two pieces is
therefore (2,0,0,0), yielding an effective time of 2.0. While
this is larger than the effective time of the previous solution
(1,0,0,0), the previous solution (using a single piece) does not
meet the loss criteria and so the new solution, denoted (2,0,
0,0)>—2.0 is stored as the new overall best solution.

FIG. 16 illustrates an example of an additional iteration of
a process for performing a fractional split decision. As in
previous iterations, the process begins with the solution of the
previous iteration (2,0,0,0) and examines the solutions with
one additional packet—(3,0,0,0), (2,1,0,0), (2,0,1,0), and
(2,0,0,1). The allowed split factors table indicates that for
three pieces, each ofthe pieces can be halfthe size (divided by
factor of 2). Therefore, each piece now has a size of 500 bytes
instead of the full 1000.

In the first case (1602), 3x500 byte pieces are sent on the
first link, for a total of 1500 bytes being sent over a 1.0
capacity link. This results in an effective time of 1.5. In the
second case (1604), 2x500 byte pieces are sent on the first link
of capacity 1.0, and 1x500 byte packet is sent on the second
link of capacity 0.5. Thus, the required time for the first and
second links is 1.0.

In the third (1606) and fourth (1608) cases, the required
time is 2.0. Thus, the best greedy solution with three pieces is
(1,1,0,0), which results in an effective time of 1.0. Since this
time is less than the previous best overall solution of (2,0,0,
0)—2.0, the new solution is saved as the overall best one.

Iteration may proceed up to an arbitrary number of pieces,
and the end result is designated as the global optimal split
decision that determines the split factor and number of pieces
to create as well as the number of pieces to send on each link.

FIG. 17A illustrates an example of a fractional split deci-
sion made with a target loss of 1.0%. FIG. 17B illustrates an
example of a fractional split decision made with target loss of
0.0001%. FIGS.17A and 17B illustrate how QOS parameters
may affect a fractional split decision. In FIGS. 17A and 17B,
respectively, the links have normalized speeds of 1.0 and 0.5.
In both cases, the estimated probability of loss of a single
packetis 0.1% or 0.001. The difference between the two cases
is that the first uses a target loss probability of 0.01 or 1%
while the second uses a target loss probability of 0.0001%.

As illustrated in FIGS. 17A and 17B, respectively, the
example greedy split decision is carried out as previously
described. For compactness, only the first six iterations of the
greedy algorithm are shown. Note that the differing value for
target loss in each case affects the allowed splits, which in turn
affects the maximum possible split factor used at each itera-
tion of the algorithm.

Applying the fractional split decision algorithm with a
target loss of 1% results in an encoder being able to split input
packets as finely as the number of packets it chooses to create,
asindicated by the allowed splits table. For example, the (5,5)
entry in FIG. 17A indicates that if the encoder sends five
pieces, each can carry a fifth of the input packet’s data and still
satisfy the loss requirement. On the other hand, the (5,3) entry
in FIG. 17B indicates that if five pieces are sent, each must
carry a third of the input packet’s data in order to satisfy the
target loss of 0.0001% used in FIG. 17B.

FIG. 17A shows that with a target loss of 1%, the optimal
split is (2,1), with each of the pieces carrying a third of the
original data. This results in each packet taking %4 of the time
to be sent, increasing total capacity by 50%. On the other
hand, FIG. 17B shows that with a target loss of 0.0001%, the
optimal split is (4,2), which results in each packet taking the
same time to be sent as the original input packet, but meets the
much stricter loss requirements.

US 9,134,984 B2

13

FIG. 18 illustrates an embodiment of an interface for man-
aging aggregate communications. In various embodiments,
interface 1800 is presented to Alice when she launches appli-
cation 406, accesses a status webpage, clicks on an icon in her
toolbar, loads an application on tablet 104 or smartphone 106,
etc. The interface is both touch-interface and mouse/key-
board friendly for a consistent cross-device experience.

Alice can enable or disable connection aggregation by
toggling button 1802.

If Alice clicks on tab 1804, she will be presented with a
dashboard in her default browser. The dashboard displays
information such as Alice’s monthly usage/charges with
respect to any carriers associated with her networking
devices. The dashboard also displays historical usage infor-
mation, projections on when Alice will meet any set thresh-
olds (e.g., 5 GB of usage on a particular link), etc. In various
embodiments, Alice can configure application 406 remotely,
via the dashboard, and/or can configure links.

If Alice clicks on tab 1806, she will be presented with a
settings menu, where she can set various preferences, such as
to prefer low latency, prefer low cost, use a particular device
only until a certain dollar amount or other usage is reached,
then stop using it, etc.

Region 1808 is a real-time display of the upload and down-
load throughput resulting from Alice’s internet usage.

Region 1810 reports a metric that summarizes the quality
of the aggregated connection and is updated in real time.

Region 1812 lists each of the individual links available for
aggregation. Alice can elect to use all, or a subset of the
available links. One example link is shown in region 1814.

Alice can turn a given link on or off (i.e., indicating whether
it should be used for aggregation) by toggling button 1816.

Metadata associated with a given link is shown in region
1818. Examples of such information include (if applicable):
Link type, link provider, link phone number, link name, link
encryption, link channel, link connection status, link model,
link unique identifier, and link billing cycle dates.

A real time display of the signal quality of a given link, in
dBm, is shown in region 1820. In the example shown, signal
quality is also segmented into five discrete display bars.

A session usage meter is depicted in region 1822. The
meter displays, in real time, how much bandwidth has been
used in one session (time between connecting and discon-
necting via application 406). The display dynamically
changes based on uplink type and usage limits.

In region 1824, a metric that summarizes the quality of the
given link is displayed. The metric is updated in real time.

In region 1826, a real time display of a given link’s down-
load and upload throughput is provided.

In region 1828, a real time display of a given link’s mea-
sured latency is provided.

If Alice clicks on control button 1830, a settings menu will
open allowing her to configure settings specific to the appli-
cable link. As one example, Alice can specify usage restric-
tions for the link via the settings menu.

As illustrated in region 1832, the information displayed for
a given link can be different based on the type of link. The link
in region 1832 corresponds to a wireless network, whereas
the link in region 1814 corresponds to a USB modem.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

10

15

20

25

30

35

40

45

50

55

60

65

14

What is claimed is:

1. A system, comprising:

a processor configured to:

enumerate one or more network devices included in the
system, wherein at least some of the one or more
network devices are of different types;
open a virtual network adapter, wherein the virtual net-
work adapter is used to aggregate network resources
made available via the enumerated one or more net-
work devices; and
bring up a plurality of links associated with the enumer-
ated one or more network devices usable via the vir-
tual network adapter, wherein bringing up the plural-
ity of links usable via the virtual network adapter
includes:
generating endpoints corresponding to the plurality of
links associated with the enumerated one or more
network devices; and
issuing commands to the enumerated devices using a
common set of primitives.

2. The system of claim 1 wherein the processor is further
configured to re-enumerate the one or more network devices
included in the system.

3. The system of claim 1 wherein the processor is further
configured to register for asynchronous notifications.

4. The system of claim 1 wherein the processor is further
configured to run, for at least one of the enumerated network
devices, a dispatcher.

5. The system of claim 1 wherein the processor is further
configured to determine whether to use at least one of the
links based on a rule.

6. The system of claim 5 wherein the rule includes a quality
of service rule.

7. The system of claim 5 wherein the rule includes a cost
rule.

8. The system of claim 1 wherein the link is associated with
a plurality of interfaces and wherein the processor is further
configured to cause at least two different types of status
information to be obtained by one of the interfaces on a
periodic basis.

9. The system of claim 1 wherein the link is associated with
a plurality of interfaces and wherein the processor is further
configured to interleave user requests with status fetching
requests on at least one of the interfaces.

10. The system of claim 1 wherein the processor is further
configured to evaluate an unsolicited message.

11. The system of claim 10 wherein the processor is further
configured to drop the unsolicited message.

12. The system of claim 10 wherein the processor is further
configured to place further processing of the unsolicited mes-
sage into a queue.

13. A method, comprising:

enumerating one or more network devices included in a

system, wherein at least some of the one or more net-
work devices are of different types;

opening a virtual network adapter, wherein the virtual net-

work adapter is used to aggregate network resources
made available via the enumerated one or more network
devices; and

bringing up a plurality of links associated with the enumer-

ated one or more network devices usable via the virtual

network adapter, wherein bringing up the plurality of

links usable via the virtual network adapter includes:

generating endpoints corresponding to the plurality of
links associated with the enumerated one or more
network devices; and

US 9,134,984 B2

15

issuing commands to the enumerated devices using a
common set of primitives.

14. The method of claim 13 further comprising re-enumer-
ating the one or more network devices included in the system.

15. The method of claim 13 further comprising registering
for asynchronous notifications.

16. The method of claim 13 further comprising running, for
at least one of the enumerated network devices, a dispatcher.

17. The method of claim 13 further comprising determin-
ing whether to use at least one of the links based on a rule.

18. The method of claim 17 wherein the rule includes a
quality of service rule.

19. The method of claim 17 wherein the rule includes a cost
rule.

20. The method of claim 13 wherein the link is associated
with a plurality of interfaces and wherein the method further
comprises causing at least two different types of status infor-
mation to be obtained by one of the interfaces on a periodic
basis.

21. The method of claim 13 wherein the link is associated
with a plurality of interfaces and wherein the method further
comprises interleaving user requests with status fetching
requests on at least one of the interfaces.

22. The method of claim 13 further comprising evaluating
an unsolicited message.

23. The method of claim 22 further comprising dropping
the unsolicited message.

24. The method of claim 22 further comprising placing
further processing of the unsolicited message into a queue.

#* #* #* #* #*

10

20

25

30

16

